# metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bin Xu, Yan-Yan Zhang, Wen-Long Liu\* and Xiao-Ya Hu

College of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou, 225002, People's Republic of China

Correspondence e-mail: wlliu@yzu.edu.cn

#### **Key indicators**

Single-crystal X-ray study T = 298 KMean  $\sigma(\text{C}-\text{C}) = 0.006 \text{ Å}$  R factor = 0.045 wR factor = 0.103 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

# Hexaaquanickel(II) bis{[N-(2-hydroxybenzylidene)alanylglycinato]cuprate(II)} dodecahydrate

Received 16 May 2006

Accepted 3 June 2006

The crystal structure of the title compound,  $[Ni(H_2O)_6]$ - $[Cu(C_{12}H_{11}N_2O_4)]_2 \cdot 12H_2O$ , consists of Cu<sup>II</sup> complex anions, Ni<sup>II</sup> complex cations and solvent water molecules. The Cu<sup>II</sup> ion is located on a general position and coordinated by a Schiff base ligand with a square-planar CuN<sub>2</sub>O<sub>2</sub> geometry. The Ni<sup>II</sup> ion is located on an inversion center and coordinated by six water molecules in an octahedral geometry.

## Comment

As part of our ongoing investigation on metal complexes with Schiff bases, we present here the structure of the title compound, (I).



The crystal structure of (I) consists of  $Cu^{II}$  complex anions, Ni<sup>II</sup> complex cations and solvent water molecules (Fig. 1). The  $Cu^{II}$  ion is located on a general position and coordinated by a trivalent Schiff base anion, *N*-(hydroxybenzylidene)alanyl-glycinate, with a square-planar  $CuN_2O_2$  geometry (Table 1). The Ni<sup>II</sup> ion is located on an inversion center and coordinated by six water molecules in an octahedral geometry.



## Figure 1

The asymmetric unit of (I), together with additional aqua ligands to complete the coordination of Ni2, with 50% probability displacement ellipsoids (arbitrary spheres for H atoms). Unlabeled atoms are related to labeled atoms by x + 1, -y + 1, -z + 1.

The extensive hydrogen-bonding network (Table 2) helps to stabilize the crystal structure.

# **Experimental**

A methanol/water solution (30 ml, v/v 1:1) containing alanylglycine (5 mmol), salicylaldehyde (5 mmol) and LiOH (10 mmol) was refluxed for 30 min. CuCl<sub>2</sub>·2H<sub>2</sub>O (5 mmol) in water (15 ml) was added and the resulting solution was adjusted to pH 10 with NaOH solution. After stirring at room temperature for 4 h, Ni(ClO<sub>4</sub>)<sub>2</sub>.6H<sub>2</sub>O (5 mmol) in water (5 ml) was added to the solution with stirring. A violet precipitate appeared immediately. After stirring for 30 min, the precipitate was filtered off and recrystallized from water. Single crystals of (I) were obtained after one week.

#### Crystal data

 $[Ni(H_2O)_6][Cu(C_{12}H_{11}N_2O_4)]_2$ --V = 4279 (3) Å<sup>3</sup>  $12H_2O$ Z = 4 $M_r = 1004.53$  $D_r = 1.559 \text{ Mg m}^{-3}$ Monoclinic, C2/c Mo Ka radiation a = 28.314 (9) Å  $\mu = 1.51 \text{ mm}^{-1}$ b = 11.792 (4) Å T = 298 (2) Kc = 14.407 (5) Å Block, violet  $\beta = 117.17 (1)^{\circ}$  $0.30 \times 0.20 \times 0.15 \text{ mm}$ 

#### Data collection

Bruker SMART APEX CCD 10637 measured reflections diffractometer  $\varphi$  and  $\varphi$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 2002)  $T_{\rm min} = 0.70, \ T_{\rm max} = 0.79$ 

#### Refinement

Refinement on  $F^2$ 
$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.045 \\ wR(F^2) &= 0.103 \end{split}$$
S = 0.933879 reflections 261 parameters

3879 independent reflections 2660 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.078$  $\theta_{\rm max} = 25.2$ 

H-atom parameters constrained  $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0438P)^{2}]$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3$  $(\Delta/\sigma)_{\rm max} = 0.001$  $\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$ 

## Table 1

Selected bond lengths (Å).

| Cu1-O1 | 1.870 (2) | Ni2-O1W   | 2.063 (3) |
|--------|-----------|-----------|-----------|
| Cu1-O3 | 1.989 (2) | Ni2 - O2W | 2.059 (2) |
| Cu1-N1 | 1.926 (3) | Ni2-O3W   | 2.033 (2) |
| Cu1-N2 | 1.873 (3) |           | × /       |

# Table 2

| Hydrogen-bond | geometry ( | [A, °] | ). |
|---------------|------------|--------|----|
|---------------|------------|--------|----|

| $D - H \cdots A$                      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $O1W-H1A\cdots O7W^{i}$               | 0.82 | 1.96                    | 2.732 (4)    | 156                                  |
| $O1W-H1B\cdots O4W$                   | 0.83 | 1.97                    | 2.781 (3)    | 168                                  |
| $O2W-H2A\cdots O8W$                   | 0.85 | 2.09                    | 2.754 (4)    | 135                                  |
| $O2W-H2B\cdots O4$                    | 0.84 | 1.98                    | 2.735 (4)    | 149                                  |
| $O3W-H3A\cdots O9W$                   | 0.92 | 1.85                    | 2.733 (4)    | 159                                  |
| O3W−H3B···O3 <sup>ii</sup>            | 0.90 | 1.86                    | 2.722 (4)    | 159                                  |
| $O4W-H4A\cdots O6W^{iii}$             | 0.79 | 2.04                    | 2.808 (3)    | 167                                  |
| $O5W-H5A\cdots O8W^{iv}$              | 0.85 | 1.99                    | 2.759 (5)    | 150                                  |
| $O5W - H5B \cdots O8W^{v}$            | 0.83 | 2.03                    | 2.814 (5)    | 156                                  |
| $O6W-H6A\cdots O2$                    | 0.84 | 1.81                    | 2.648 (4)    | 178                                  |
| $O6W - H6B \cdots O5W$                | 0.82 | 2.07                    | 2.714 (4)    | 135                                  |
| $O7W-H7A\cdots O2$                    | 0.85 | 1.85                    | 2.697 (4)    | 179                                  |
| $O7W - H7B \cdot \cdot \cdot O1^{vi}$ | 0.86 | 1.91                    | 2.750 (4)    | 166                                  |
| $O8W-H8B\cdots O7W^{vii}$             | 0.86 | 2.23                    | 2.748 (5)    | 119                                  |
| $O9W - H9D \cdots O1W^{viii}$         | 0.85 | 2.36                    | 3.114 (4)    | 149                                  |
| O9W−H9E···O10W                        | 0.85 | 2.04                    | 2.877 (5)    | 165                                  |
| $O10W - H10A \cdots O5W^{ix}$         | 0.85 | 2.03                    | 2.813 (5)    | 153                                  |

Symmetry codes: (i)  $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (ii) -x + 1, -y + 1, -z + 1; (iii)  $x + \frac{1}{2}, y - \frac{1}{2}, z;$  (iv)  $x - \frac{1}{2}, y - \frac{1}{2}, z;$  (v)  $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1;$  (vi)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (vii)  $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (viii)  $-x + 1, y, -z + \frac{1}{2}$ ; (ix)  $x + \frac{1}{2}, y + \frac{1}{2}, z$ .

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions,  $U_{iso}(H) =$  $1.5U_{eq}(O)$ . Methyl H atoms were placed in calculated positions with C-H = 0.96 Å and the torsion angle was refined to fit the electron density;  $U_{iso}(H) = 1.5U_{eq}(C)$ . Other H atoms were placed in calculated positions with C-H = 0.93-98 Å, and refined in riding mode;  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C}).$ 

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China.

## References

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2002). SMART. Version 5.630. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.